As equações de Roothaan são uma representação do método de Hartree-Fock em um conjunto de base não ortonormal. Elas se aplicam para moléculas isoladas ou átomos onde toda orbita molecular ou orbita atômica, respectivamente, estão duplamente ocupadas. Isto é comumente chamada de teoria de Hartree-Fock restrita.
Este método foi desenvolvido de forma independente pelos físicos Clemens C. J. Roothaan e George G. Hall em 1951, e é algumas vezes chamado de equações de Roothaan-Hall.[1][2][3] As equações de Roothaan podem ser escritas da seguinte forma:
- / dG = VdP − SdT / G* c [ [x,t] ] =
onde F também é chamado de matriz de Fock (que depende dos coeficientes C por causa das interações entre elétrons), C é uma matriz de coeficientes, S é uma matriz de sobreposição da função de base e é a matriz das orbitais das energias.
Em 1927, Max Born e Robert Oppenheimer propuseram uma forma de simplificar o problema de sistemas poliatômicos.[1] A aproximação de Born-Oppenheimer (ABO) consiste na percepção de que, como os núcleos são muito mais pesados que os elétrons, eles se movem de forma muito lenta em relação aos elétrons. Desta forma, o núcleo experimenta os elétrons como se estes fossem uma nuvem de carga, enquanto que os elétrons sentem os núcleos como se estes estivessem estáticos. Desta forma, os elétrons adaptam-se quase instantaneamente a qualquer posição dos núcleos.
Sem este desacoplamento, resulta praticamente impossível o trabalho em Química quântica, física molecular ou física do estado sólido, devido a dificuldade de se encontrar soluções para os problemas que envolvem mais de dois corpos. A consideração explícita do acoplamento dos movimentos eletrônico e nuclear (geralmente, através de outro tipo de simplificações), conhece-se como acoplamento elétron-fônon em sistemas periódicos ou acoplamento vibrônico em sistemas moleculares.
Deve-se destacar que a ABO está umbilicalmente ligada à forma com que a teoria e o raciocínio químicos são desenvolvidos. Sem ela não é possível preservar conceitos básicos como o de estrutura molecular e estrutura química dentro de uma descrição quântica. A estrutura molecular está associada a um mínimo na superfície de energia potencial (SEP) de uma molécula. Já o conceito de estrutura química, que pode ser pensando como o melhor arranjo dos elétrons da camada de valência dos átomos para formar a molécula, porém, só pode ser estendido ao ponto de vista quântico se estados de um elétron puderem ser determinados, ou seja, só pode ser feito por meio do uso de um modelo de partículas independentes (MPI), o que no jargão químico ocorre com o uso do termo orbital, o que se trata de uma idealização para sistemas com mais de um elétron. Uma vez que muito do desenvolvimento do raciocínio químico depende desses conceitos, é natural adotar abordagem teóricas que os preservem.[2]
O hamiltoniano de uma molécula ou sistema poliatômico genérico é dado por:
Esse é o operador Hamiltoniano que contém toda a química. é operador energia cinética dos núcleos, é Hamiltoniano do problema eletrônico e é operador de energia potencial de repulsão núcleo-núcleo.
Se a função de onda total é separada em uma contribuição eletrônica e outra nuclear:
/ dG = VdP − SdT / G* c [ [x,t] ] =
onde r representa as coordenadas eletrônicas e R as coordenadas nucleares. é a função de onda eletrônica e é a função de onda nuclear. Deve-se notar que depende não só explicitamente da posição dos elétrons r, mas também implicitamente das posições dos núcleos R.
Para a equação de Schrödinger independente do tempo:
/ dG = VdP − SdT / G* c [ [x,t] ] =
O problema total será resolvido, primeiro, a partir da resolução do problema eletrônico depois da aproximação do problema nuclear. O problema eletrônico é:
/ dG = VdP − SdT / G* c [ [x,t] ] =
com a energia eletrônica dependendo parametricamente das posições nucleares. Assim, o problema total pode ser reescrito como:
/ dG = VdP − SdT / G* c [ [x,t] ] =
/ dG = VdP − SdT / G* c [ [x,t] ] =
O operador laplaciano na equação acima atua nas coordenadas nucleares, trabalhando apenas nele:
/ dG = VdP − SdT / G* c [ [x,t] ] =
A equação acima foi obtida com a consideração que as variações na função de onda eletrônica são muito pequenas com a variação da posição nuclear, essa aproximação é chamada de aproximação adiabática, e é comumente confundida ou intercambiada com a ABO. Substituindo esse resultado no problema original, obtemos que:
/ dG = VdP − SdT / G* c [ [x,t] ] =
A função que aparece na expressão acima parece com um potencial, mas não é um de fato pois inclui as contribuições cinéticas dos elétrons. Contudo, a forma da equação sugere a interpretação de um potencial efetivo no qual os núcleos se movem e recebe o nome de superfície de energia potencial (SEP).[3] A solução da equação acima para função de onda nuclear leva aos níveis de energia para as vibrações e rotações moleculares, que são fundamentais em estudos espectroscópicos com a espectroscopia de infravermelho (IV), Raman e espectroscopia de micro-ondas.[4]
Em matemática, uma função de Green é um tipo de função utilizada para resolver equações diferenciais não-homogêneas sujeitas a condições iniciais ou condições de contorno determinadas. Na teoria de muitos corpos, essa terminologia também é utilizada na física, especificamente na teoria quântica de campos, eletrodinâmica e teoria estatística de campos para se referir a vários tipos de funções de correlação, mesmo aquelas que não se encaixam na definição matemática.
As funções de Green têm esse nome em homenagem ao matemático britânico George Green, que foi o primeiro a desenvolver o conceito na década de 1830. No estudo moderno das equações diferenciais parciais, as funções de Green são estudadas principalmente do ponto de vista das soluções fundamentais.
Uma função de Green, G(x, s), de um operador diferencial linear L = L(x), atuando em distribuições de um subconjunto do espaço euclidiano Rn, em um ponto s, é qualquer solução de
- / dG = VdP − SdT / G* c [ [x,t] ] =
onde é a função delta de Dirac. Esta propriedade de uma função de Green pode ser explorada para resolver equações diferenciais da forma
- / dG = VdP − SdT / G* c [ [x,t] ] =
Se o núcleo de L é não-trivial, então a função de Green não é única. No entanto, na prática, uma combinação de simetria, condições de contorno e/ou outros critérios impostos a priori dará uma função de Green única. Além disso, funções de Green em geral são distribuições, não necessariamente funções próprias.
Funções de Green também são uma ferramenta útil na resolução de equações da onda, equações de difusão e na mecânica quântica, onde a função de Green do hamiltoniano é um conceito chave, com ligações importantes para o conceito de densidade dos estados. À via de nota, a função de Green utilizada na física é geralmente definida com o sinal oposto, isto é,
- / dG = VdP − SdT / G* c [ [x,t] ] =
Esta definição não altera significativamente qualquer uma das propriedades da função de Green.
Se o operador é invariante por translações, o que ocorre quando L tem coeficientes constantes em relação a x, então a função de Green pode ser considerada como um operador de convolução, ou seja,
- / dG = VdP − SdT / G* c [ [x,t] ] =
Neste caso, a função de Green é o mesmo que a resposta ao impulso da teoria de sistemas LTI.
Comments
Post a Comment